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We generalize the mean-field theory for the spinless Bose-Hubbard model to account for the different types
of superfluid phases that can arise in the spin-1 case. In particular, our mean-field theory can distinguish polar
and ferromagnetic superfluids, Mott insulator, that arise at integer fillings at zero temperature, and normal Bose
liquids into which the Mott insulators evolve at finite temperatures. We find, in contrast to the spinless case,
that several of the superfluid-Mott insulator transitions are of first order at finite temperatures. Our systematic
study yields rich phase diagrams that include first-order and second-order transitions and a variety of tricritical
points. We discuss the possibility of realizing such phase diagrams in experimental systems.
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I. INTRODUCTION

Experimental investigations of ultracold atoms in optical
lattices have opened up a new realm in the study of quantum
phase transitions.1,2 The superfluid �SF� to Mott-insulator
�MI� transition has been observed in spin-polarized 87Rb at-
oms trapped in a three-dimensional, optical-lattice potential,3

by changing the strength of the on-site potential, as predicted
theoretically by studies of the spinless Bose-Hubbard
model.4–6 Furthermore, technical advances in the trapping of
atoms by purely optical means7 have enhanced the interest in
the study of quantum magnetism in confined dilute atomic
gases. Alkali atoms with nuclear spin I=3 /2, such as 23Na,
39K, and 87Rb, have hyperfine spin F=1. In conventional
magnetic traps, these spins are frozen, so the atoms can be
treated as spinless bosons; by contrast, in purely optical
traps, these spins are free, so the Bose condensates, which
form at low temperatures, can have a spinor nature8–10 and
the SF-MI transition can be modified.1–13 In the spinless
case, the SF-MI transition, which occur, at fixed boson den-
sity, when the number of bosons per site is an integer, is
controlled by the interaction U0 between bosons at the same
site. As U0 increases beyond a critical value U0C, the SF
phase undergoes a continuous transition to a MI phase; this is
reflected in the development of a gap at the transition. When
the spin is nonzero, such a gap also develops at the SF-MI
transition, but the properties of the phases and the nature of
these transitions are modified by the spin degrees of free-
dom.

Theoretical work on this problem has dealt primarily with
the properties of spinor condensates by using a continuum,
effective, low-energy Hamiltonian. Such a Hamiltonian suf-
fices if one is interested in the natures of the superfluid
phases, which can be polar or ferromagnetic, and in their
excitations, which include vector or quadrupolar spin waves
and topological defects.8–10 However, if we want to study the
SF-MI transitions, we must use a lattice model such as the
spin-1 Bose-Hubbard model. Some groups11–13 have initiated

such an investigation by obtaining the zero-temperature
phase diagram of this model in a mean-field approximation.
The topology of this phase diagram for the spin-1 Bose-
Hubbard model is similar to that of its spinless counterpart,
but, in the spin-1 model, the superfluid phases can be either
polar or ferromagnetic depending on whether the spin-
dependent interaction favors or disfavors the formation of
singlets. In the former case, the SF-MI phase transition is
continuous if the density of bosons per site � is an odd num-
ber, but is of first order if � is an even number.

We have two main goals in this paper: The first is to give
a global view of the zero-temperature, mean-field-theory
phase diagram of the spin-1 Bose-Hubbard model, emphasiz-
ing issues of first-order coexistence that have not been high-
lighted so far. The second is to generalize this mean-field
theory to finite temperatures T�0 and, thus, obtain the
finite-temperature, mean-field-theory phase diagram for this
model.

The spin-1 Bose-Hubbard model is defined by the Hamil-
tonian

H = − t �
�i,j�,�

�ai,�
† aj,� + H.c.�

+
U0

2 �
i

n̂i�n̂i − 1� +
U2

2 �
i

�F� i
2 − 2ni

ˆ � − �
i

�ini
ˆ , �1�

where the first term is the kinetic energy associated with the
hopping of bosons between nearest-neighbor pairs of sites
�i , j� with amplitude t, ai,�

† �ai,�� is the boson creation �anni-
hilation� operator at site i with spin component � �that can

assume the values 1, 0, and −1�, ni�
ˆ �ai,�

† ai,�, ni
ˆ ���ni,�

ˆ ,

and F� i=��,��ai,�
† F� �,��ai,�� are, respectively, the total boson

number and spin on site i, and F� �,�� are the standard spin-1
matrices; U0 is the on-site Hubbard repulsion and U2 is the
energy for nonzero spin configurations on a site. The origin
of such a spin-dependent term lies in the difference between
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the scattering lengths a0 and a2, for S=0 and S=2
channels,14 respectively; in terms of these lengths, U0
=4��2�a0+2a2� /3M and U2=4��2�a2−a0� /3M, where M is
the mass of the atom.8 For 23Na, a2=54.7aB and a0=49.4aB,
where aB is the Bohr radius, so U2�0, whereas for 87Rb,
a2= �107±4�aB and a0= �110±4�aB, so U2 can be negative.
The parabolic trapping potential with strength VT is repre-
sented by the site-dependent chemical potential �i=�
−VT�Ri�2, where Ri is the distance of site i from the center of
the trap and � is a uniform chemical potential that controls
the mean density of the bosons. In this study, we neglect the
trap potential �i.e., we set VT=0� and focus on the effects of
the spin degrees of freedom. However, the mean-field theory
described below can be generalized to discuss the case with
VT�0.

The zero-temperature phase diagram of model �1� has
been obtained in the mean-field approximation by some
groups.11–13 We have extended these studies significantly.
Before presenting the details of our work, we give a qualita-
tive overview of our results.

Consider first the case U2=0: We might expect the spin-1
and spinless Bose-Hubbard models to have the same phase
diagram in this case since the ground-state energy does not
depend on the spin. This is superficially true at T=0 in so far
as the SF-MI phase boundaries for both these models over-
lap. However, as we will show, the SF phase is highly de-
generate in the spin-1 case and, for T�0, the SF-MI transi-
tion becomes of first order and, eventually, is continuous
again. Thus, the finite-temperature phase diagram has a rich
topology, with first-order boundaries evolving into continu-
ous ones at tricritical points.

If U2�0, the on-site interaction between the bosons be-
comes spin dependent. It turns out that we must distinguish
between the cases U2�0 and U2�0. The former has a phase
diagram that is very similar to that for U2=0; the major
qualitative difference arises in the nature of the SF phase that
is now a ferromagnetic superfluid.

There are many differences between the phase diagrams
of the spin-1 model with U2=0 and U2�0. If U2�0, the SF
phase is a polar superfluid. Furthermore, even at T=0, the
SF-MI transitions are different for odd and even densities.
For odd densities, the T=0 SF-MI transition is continuous as
for U2=0; however, for even densities, this SF-MI transition
turns out to be of first order because of the formation of
singlets that also stabilize the MI phase considerably.

At finite temperatures, the MI phases evolve without a
singularity into a normal Bose liquid �NBL�. These are really
not distinct phases, but, as we will show, the compressibility
� can be used effectively to delineate the crossover between
MI and NBL regions.

To present our results in detail, we must introduce our
mean-field theory. We do this in Sec. II. Our results are given
in Sec. III. We end with a discussion in Sec. IV.

II. MEAN-FIELD THEORY

Mean-field theory has been very successful in obtaining
the phase diagram for the spinless Bose-Hubbard model.5,6

There are three formulations of this mean-field theory: one

uses a model with infinite-range interactions, another a
Gutzwiller-type wave function, and a third,5 which we fol-
low, a decoupling approximation. The unique feature of this
decoupling scheme is that, unlike conventional mean-field
theories, it does not decouple the interaction term to obtain
an effective one-particle problem but, instead, decouples the
hopping term to obtain an effective one-site problem. This
one-site problem is then solved self-consistently. We gener-
alize the decoupling procedure to the spin-1 case as follows:5

In the identity ai,�
† aj,�= �ai,�

† − �ai,�
† ���aj,�− �aj,���+ �ai,�

† �aj,�

+ai,�
† �aj,��− �ai,�

† ��aj,��, where �O� denotes the equilibrium
value of an operator O, we neglect the first term that is
quadratic in deviations from the equilibrium value. Thus,

ai,�
† aj,� � �ai,�

† �aj,� + ai,�
† �aj,�� − �ai,�

† ��aj,�� . �2�

Since we expect superfluid phases, it is natural to introduce
the superfluid order parameters

	� � �ai,�
† � � �ai,�� �3�

for �=1, 0, and −1. We consider equilibrium states with
uniform phases, so we choose these order parameters to be
real. �For the case VT�0, 	� also depends on the site label i;
see Sec. IV.� Given the decoupling approximation �2�, the
Hamiltonian �1� can be written as a sum over single-site,
mean-field �MF� Hamiltonians:

H = �
i

Hi
MF, �4�

where

Hi
MF =

U0

2
n̂i�n̂i − 1� +

U2

2
�F� i

2 − 2ni
ˆ �

− �ni
ˆ − 	��ai,�

† + ai,�� + �
�

�	��2. �5�

We set the energy scale by choosing zt=1, where z is the
number of nearest neighbors. At least one of the order pa-
rameters 	� is nonzero in a superfluid phase. In order to
calculate 	� in our mean-field theory, we first obtain the
matrix elements of the mean-field Hamiltonian Hi

MF in the
on-site, occupation-number basis 	�ni,−1 ,ni,0 ,ni,1�
 truncated
at a finite value nmax of the total number of bosons per site
ni=��ni,�. In most of our studies, we use nmax=4, for which
the mean-field Hamiltonian is a 35
35 matrix.15 We diago-
nalize this matrix to obtain its eigenvalues E� and eigenvec-
tors ����:

Hi
MF���� = E�����; �6�

we suppress the site index i on these eigenvalues and eigen-
vectors since all the phases we consider are spatially uni-
form.

We now obtain the variational free energy

F��,U0,U2,T;	�� = − T ln Z��,U0,U2,T;	�� , �7�

where Z�� ,U0 ,U2 ,T ;	�� is the partition function
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Z��,U0,U2,T;	�� = �
�

e−E�/T, �8�

with the Boltzmann constant kB chosen to be 1. The varia-
tional free energy F must be minimized with respect to the
order parameters 	�, i.e., we must solve the equations
�F /�	�=0 for �=1, 0, and −1. These equations can be re-
cast as self-consistency conditions for 	�; solutions of these
self-consistency conditions correspond to extrema of F. In
case there is more than one solution, we must pick the one
that yields the global minimum of F. �At a first-order phase
boundary, F has two, equally deep, global minima.� The val-
ues of 	� and F at the global minimum yield the equilibrium
order parameters 	�

eq and free energy Feq. In our mean-field
theory, the superfluid density is

�s = �
�

�	�
eq�2. �9�

The magnetic properties of the superfluid phases of this
model are obtained from8

�F� � =

�
�,��

	�
eqF� �,��	��

eq

�
�

�	�
eq�2

; �10�

the explicit forms of the spin-1 matrices now yield

�F� � = �2
�	1	0 + 	−1	0�

�
�

�	��2
x̂ +

�	1
2 − 	−1

2 �
�
�

�	��2
ẑ ,

�F� �2 = 2
�	1	0 + 	−1	0�2

��
�

�	��2�2 +
�	1

2 − 	−1
2 �2

��
�

�	��2�2 , �11�

where x̂ and ẑ are unit vectors in spin space, and we suppress
the superscript eq for notational convenience; all 	� used
here and henceforth are actually 	�

eq. Superfluid states with

�F� �=0 and �F� �2=1 are referred to as polar and ferromag-
netic, respectively. The polar state has an order-parameter
manifold �U�1�
S2
 /Z2, where U�1� denotes the phase
angle 
, S2 refers to the directions n̂ on the surface of a unit
sphere �on which orientations are specified by the angles
�� ,�� of the spin quantization axis
, and Z2 arises because of
the symmetry of this state under the simultaneous transfor-
mations 
→
+� and n̂→−n̂. Thus, the superfluid order pa-
rameters can be written as

� 	1

	0

	−1
� = ��se

�
�−
1
�2

e−�� sin �

cos �

1
�2

e�� sin � � . �12�

Similarly, since the ferromagnetic superfluid state has an
order-parameter manifold with the symmetry group SO�3�,

� 	1

	0

	−1
� = ��se

ı�
−���
e−ı� cos2 �

2

�2 cos
�

2
sin

�

2

eı� sin2 �

2

� , �13�

where �, �, and � are Euler angles.
We consider only spatially uniform superfluids in equilib-

rium, so it suffices to use real order parameters. Thus, for the
polar superfluid, we have the following possibilities: �i� 	1
=	−1�0 and 	0=0 with 
=�=�=� /2 or 
=−�=�=� /2;
and �ii� 	1=	−1=0 and 	0�0 with �=0 or �, 
=0 or �, and
0���2�. Similarly for the ferromagnetic superfluid 	1
=	−1, �=� /2, �=0, 0�
=��2�, and 	0=�2	1.

The equilibrium density � and compressibility � can be
obtained from

� = −
�Feq

��
=

1

Z
�
�

e−E�/T����n̂���� , �14�

where E� and ���� are E� and ���� at the global minimum of
F and

� =
��

��
. �15�

The three quantities �s, �F� �2, and � together determine the
thermodynamic phase of model �1� for any point in the pa-
rameter space 	� ,U0 ,U2 ,T
 as given in Table I. Strictly
speaking, there is no distinction between the MI and the
NBL. The former exists at T=0 and has �=0; it evolves
without any singularity into the NBL at T�0. At low T, the
compressibility � is exponentially small in the NBL so one
can think of it as a MI phase. At high T, � is substantially
different from 0; it is best to think of this phase as a normal
Bose liquid. It is convenient, therefore, to define a crossover
boundary above which � is substantial; we use the criterion
�=�X �we use �X=0.01, 0.002, or 0.03� to obtain the MI-
NBL crossover boundary shown in some of our phase dia-
grams. We must remember, of course, that this is not a strict
phase boundary and it depends on the value we choose for
the crossover compressibility �X.

TABLE I. The superfluid density �s, �F� �2, and the compressibil-
ity � in the different phases of the spin-1 Bose-Hubbard model. The
MI and NBL are really the same phase �see text�.

Phases �s �F� �2 �

Polar superfluid �PSF� �0 0 �0

Ferro superfluid �FSF� �0 1 �0

Mott insulator �MI� 0 0

Normal bose liquid �NBL� 0 �0
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III. RESULTS

We are now in a position to present the results of our
mean-field theory. It is necessary to distinguish between
three qualitatively different regimes: �1� U2 /U0=0, �2�
U2 /U0�0 �we use U2 /U0=0.03 since this is appropriate for
23Na, and �3� U2 /U0�0 as in 87Rb �for specificity, we use
U2 /U0=−0.03�.

We first consider U2 /U0=0, which can be achieved when
the scattering lengths are equal, i.e., a0=a2. In this case, the
on-site interaction between bosons is spin independent. This
leads to an infinitely degenerate superfluid state: Specifically,
for a given value of the superfluid density �s, the three order
parameters 	� ,�=−1, 0, and 1, can have any magnitudes
that satisfy Eq. �9�; e.g., if we make the specific choice 	−1
=	1, then the pseudograyscale plot of Fig. 1�b� shows that
the minima of the variational mean-field energy at T=0 lie
on the ellipse 2	1

2+	0
2=�s. This degeneracy makes the super-

fluid phase of the spin-1 Bose-Hubbard model different from
its spin-0 counterpart even if U2=0, and it implies that an
infinite number of SF phases coexist at U2=0. However, the
zero-temperature phase diagram of Fig. 1�a� is the same as
that of spinless Bose-Hubbard model;5 and, in particular,

lobes of the MI phase are separated from the SF phase by the
SF-MI boundaries that are all continuous at T=0; the density
� is fixed at integral values in each MI lobe.

Striking differences between the spin-1 and spinless cases
appear at finite temperatures. We demonstrate this in Figs.
1�a� and 2; the former compares phase diagrams at T=0 and
T=0.05, and the latter presents plots, both at T=0 and T
=0.05, of the superfluid density �s and the density � as func-
tions of the chemical potential � for three different values of
the on-site interaction U0 �=4, 5, and 6�. �In both spinless and
spin-1 cases, if U2=0, the tip of the first lobe lies at U0C��
=1��5.8 for T=0.5,13
 Figure 1�a� shows that U0C��� de-
creases as the T increases, i.e., the MI lobes grow at the
expense of the SF phase. Figure 2 shows that �s goes to zero
continuously at the SF-MI transition if T=0, but with a jump
if T=0.05. Thus, the SF-MI transition becomes a first-order
transition at finite T and the zero-temperature SF-MI bound-
aries �Fig. 1�a�
are really lines of tricritical points; as the
temperature is increased further, the first-order transition
again becomes continuous at another tricritical point.

The first-order, SF-MI coexistence boundary is associated
with the three-degenerate-minima structure in the variational
free-energy plots, shown in Fig. 3. To obtain these plots we

FIG. 1. �a� Phase diagrams in the ��-U0� plane for U2=0: Solid lines indicate the T=0 continuous phase boundaries between SF and MI
phases; these phase boundaries evolve into first-order boundaries at finite �but low� temperatures as shown by the representative dashed lines
for T=0.05. At higher temperatures, these first-order boundaries become continuous again at lines of tricritical points. Pseudograyscale plots
at T=0 of the variational ground-state energy E0 for �b� U2=0, �c� U2 /U0=0.03, and �d� U2 /U0=−0.03, respectively; the four degenerate
minima in �c� and �d� show that the SF phase is polar in the former and ferromagnetic in the latter. In �b�, i.e., U2=0, the SF phase is
infinitely degenerate �see text�.
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use 	−1=	0=	1�	, which is one of the admissible solu-
tions in the infinitely degenerate SF phase for the case U2
=0; the infinite degeneracy of this phase, illustrated for T
=0 in Fig. 1�b�, persists in our mean-field theory even if T
�0. Figure 3 shows plots of the variational free energy F
�ground-state energy E0 for T=0� as a function of 	 for dif-
ferent values of � in the vicinity of the SF-MI transition; the
minima at 	=0 and 	�0 correspond, respectively, to MI
and SF phases. At T=0, the SF-MI transition is continuous:
this is reflected in the plots of E0 in Fig. 3�a�, where, as we
go from the SF to the MI phase by changing �, two global
minima with 	�0 merge to yield one minimum at 	=0;
precisely at the mean-field critical point, we have a quartic
minimum. For 0�T, F develops three degenerate minima at
the SF-MI boundary, indicating clearly the coexistence of SF
and MI phases at a first-order boundary. This boundary can
be crossed either by changing � at fixed T �Fig. 3�b�
 or by
changing T at fixed � �Fig. 3�c�
. At sufficiently high tem-
peratures, this three-minima structure of F goes away at a
tricritical point at which the three minima coalesce to yield a
sixth-order minimum. Beyond this tricritical point, the
SF-MI transition is continuous �second order�.

Calculations such as those summarized in the plots of Fig.
3 help us to obtain the phase diagrams shown in Figs.
4�a�–4�d� for U0=12 and U2=0. Let us begin with the �-T

phase diagram shown in Fig. 4�a�. The MI phases �lobes in
Fig. 1�a�
 at T=0 evolve without any singularity into the
NBL for T�0. As we have emphasized earlier, MI and NBL
phases are not distinct, but it is useful to think of a smooth
crossover from one to the other; we define these crossover
boundaries as the loci of points at which the compressibility
�X=0.02. The MI-NBL crossover boundaries �lines with
filled triangles� are also shown in Figs. 4�a� and 4�c�. To
show the dependence of this crossover boundaries on the
crossover value of the compressibility, we have computed
this line for slightly different crossover values ��X=0.01,
0.02, and 0.03�. The dependence of this line on these values
is given in Fig. 4�c�; though the position of this line changes,
its shape does not undergo a qualitative change.

Islands of the SF phase appear in the �-T phase diagram;
the first two of these are shown in Fig. 4�a�, where one is
marked SF and the other, near the origin, is shown magnified
in Figs. 4�b� and 4�c�. The only difference between Figs. 4�b�
and 4�c� is that the latter shows the MI-NBL crossover
boundary �line with triangles� and a line with stars, the locus
of points in the SF phase at which the variational free energy
F goes from a curve with three minima to one with two
minima. This line meets the SF-MI boundary at a tricritical
point labeled TCP1. Higher islands of the SF phase show
analogous tricritical points labeled TCP2, TCP3, etc.; the

FIG. 2. Representative plots of �a� �s and �b� � versus � for U0=4, 5, and 6, and U2=0 at T=0. Similar plots at T=0.05 are given in �c�
and �d�. In the MI phases, �s=0 and � is an integer �=1 in �b� for U0=6
 for T=0; for 0�T, the MI phase evolves without a singularity �see
text� into the NBL, in which � is exponentially close to an integer �=1 in �d� for U0=5 and 6
. As the temperature increases from zero, the
MI phases grow at the expense of SF phase and the SF-MI transition becomes of first order �see Fig. 1.
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SF-MI phase boundaries meet the T=0 axis at the zero-
temperature tricritical points TCP01, TCP02, TCP03, etc.
�Fig. 4�a�
. Figure 4�d� shows the density-temperature ��-T�
version of part of the �-T phase diagram of Fig. 4�a� �with-
out the MI-NBL crossover line�. The first-order parts of the
SF-MI boundaries now appear as regions of two-phase coex-
istence that are hatched with tie lines. The two-phase regions
corresponding to the two lowermost SF-MI boundaries in
Fig. 4�a� are depicted; they end at the tricritical points TCP1
and TCP2, out of which emerge the continuous �second or-
der� SF-MI phase boundaries. We use the label MI/NBL
since there is no strict distinction between MI and NBL
phases for T�0. Note that, in such a �-T phase diagram, the
MI/NBL phases get pinched into exponentially small regions
�e.g., in the vicinity of �=1 in Fig. 4�d�
 as T→0 and two
zero-temperature tricritical points get mapped onto each
other �e.g., TCP01 and TCP02 in Fig. 4�d�
.

We now investigate the case U2�0, so the on-site inter-
action between bosons depends on the spin. This lifts some
of the infinite degeneracy we encountered in the case U2=0
as can be seen directly at T=0 by comparing the pseudogray-
scale plots of E0 in Figs. 1�b�–1�d�, for U2=0, U2�0, and
U2�0, respectively.

If U2�0, there are four degenerate minima, each corre-
sponding to a ferromagnetic SF, with 	−1=	1 and 	0
= ±�2	±1. The zero-temperature, mean-field, phase diagram
for this case is shown in Fig. 5; it has the same topology as
the phase diagram for the case U2=0 �Fig. 1�a�
. We see that
the MI phases have shrunk marginally and the SF-MI transi-
tions are still continuous. The continuous nature of the T
=0, SF-MI transition is illustrated by the continuous varia-
tion of 	±1, 	0, and �s as functions of � in Fig. 6. The

parameter �F� �2, defined only in the SF phase, assumes the
value 1, which confirms that we have a ferromagnetic SF
phase in this case. The �-T phase diagram for the case U2
�0 has the same topology as the U2=0 phase diagrams of
Fig. 4. We do not show the �-T phase diagram for U2�0
since, for the parameters we use, namely, U0=12 and
U2 /U0=−0.03, the phase boundaries are very close to those
in Fig. 4.

If U2�0, there are four degenerate minima of the varia-
tional free energy F shown, e.g., at T=0 in the pseudogray-
scale plot of Fig. 1. Each one of these minima corresponds to
a polar SF, with either 	−1=	1�0 and 	0=0 or vice versa,
as shown in the plots of 	±1 and 	0, versus � in Fig. 7 for

U2 /U0=0.03. The parameter �F� �, defined only in the SF
phase, assumes the value 0, which also confirms that we
have a polar SF phase. The zero-temperature, mean-field,
phase diagram for this case is shown in Fig. 8. If the density
� is equal to an odd integer ��=1 is shown in Fig. 8�, this
phase diagram has the same form as its counterpart for U2
=0 �Fig. 1�a�
. We see that the MI lobes expand marginally,
and the SF-MI transitions are still continuous. However, if
the density � is equal to an even number ��=2 is shown in
Fig. 8�, the SF-MI transition becomes of first order and the
MI phase is stable over a much wider region of parameter
space than for the case U2=0: As we show in Fig. 9, for
U2 /U0=0.03, U0=7, and T=0, �s and � vary continuously as
functions of � at the SF-MI transition for �=1 but discon-
tinuously for �=2. For comparison, we also include the plots
for U2=0. �We use U0=7 here, rather than U0=12, to com-
press the range of � over which the SF-MI transitions occur.�

For �=2 in the MI phase, there are exactly two bosons
localized per site and the total spin at every site can be either
S=0 or S=2. Since U2�0, there is an energy difference
between the S=0 and S=2 states, with a lower energy for the
singlet state. To go from the MI to the SF phase, this singlet
state has to be broken by supplying an energy �U2, which
gives a rough estimate for the latent heat of this first-order
transition if 0�T. This requirement of a latent heat leads to
the greater stability of the MI phases for even values of �
relative to their counterparts for odd values of �. Thus, the
�=2 MI lobe in Fig. 8 is substantially larger than the one for
�=1. The �-T phase diagram for the case U2�0, shown in
Fig. 10�a�, for U0=12 and U2 /U0=0.03, has nearly the same
form as the U2=0 phase diagram of Fig. 4. The principal

FIG. 3. Plots of the variational free energy F �ground-state en-
ergy E0 for T=0� as a function of 	 for different values of � in the
vicinity of the SF-MI transition for U2=0 and with 	−1=	0=	1

�	 �see text�. The minima at 	=0 and 	�0 correspond, respec-
tively, to MI and SF phases. �a� The two minima at 	�0 merge into
one minimum at 	=0 to yield the mean-field continuous SF-MI
transition at T=0 as we increase � from 1.5 �bottom curve� to 2.3
�top curve� in steps of 0.2. Similar plots of F are given in �b� and
�c�. For 0�T, F develops three degenerate minima at the SF-MI
boundary, indicating clearly the coexistence of SF and MI phases at
a first-order boundary. This boundary can be crossed either �b� by
changing � �from 0.7 �bottommost curve� to 1.5 �topmost curve� in
steps of 0.2
 at fixed T=0.05 or �c� by changing T �0 �topmost
curve� to 0.1 �bottommost curve� in steps of 0.01
 at fixed �=2.
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qualitative difference between these phase diagrams is that,
if U2�0, there are no zero-temperature, tricritical points for
the first-order boundaries associated with the MI lobes for
even values of �; e.g., the tricritical point TCP03 in Fig. 4
has no counterpart in Fig. 10�a�. A quantitative comparison
between these two phase diagrams is made in Fig. 10�b�; this
shows that the two phase diagrams are nearly indistinguish-
able except for the first-order boundaries that link the zero-
temperature, SF-MI transitions for even values of � with the
tricritical points directly above them �e.g., TCP3�. In Fig.
10�b�, the dashed line with open circles �open diamonds� is
the first-order boundary for U2 /U0=0.03 �U2=0�. The region

I between these lines lies in the MI �SF� phase if U2 /U0
=0.03 �U2=0�. The lines with filled triangles show the MI-
NBL crossover as in Fig. 4�a�. Phase diagrams such as Fig.
10 are obtained by calculating the order parameters 	�, and
thence � and �s, as functions of � at different temperatures.
Representative plots are shown in Fig. 11 for U2 /U0=0.3
and U0=7, and T=0 and T=0.05.

IV. CONCLUSIONS

We have carried out the most extensive study of the phase
diagram of the spin-1 Bose-Hubbard model so far by gener-

ρ

ρ

µ µ
ρ

µ

FIG. 4. �a� Mean-field phase diagram in the �-T plane for U0=12 and U2=0. Lines with open �filled� circles represent first-order
�continuous� SF-MI/NBL phase boundaries. First-order and continuous boundaries meet at tricritical points �TCPs�. The T=0 �T�0�
tricritical points are labeled TCP01, TCP02, etc. �TCP1, TCP2, etc.�. The line with filled triangles represents the crossover boundary between
MI and NBL regions of the MI/NBL phase. The lower left corner of the phase diagram in �a� is enlarged in �b� and �c�. The only difference
between �b� and �c� is that the latter shows the MI-NBL crossover boundary �lines with open, filled triangles, and open diamonds,
respectively, for slightly different crossover values of �X=0.01, 0.02, and 0.03� and a line with stars, the locus of points in the SF phase at
which the variational free energy F goes from a curve with three minima to one with two minima; this line meets the SF-MI boundary at
TCP1. �d� The density-temperature ��-T� version of part of the �-T phase diagram of �a� �without the MI-NBL crossover line�; tie lines are
used to hatch the two-phase regions in which SF and MI/NBL phases coexist �see text�.
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alizing an intuitively appealing mean-field theory that has
been used earlier for the spinless case. Our study yields both
zero-temperature and finite-temperature phase diagrams for
this model. Only T=0 phase diagrams had been obtained so
far,11–13 so our elucidation of the finite-temperature proper-
ties of this model yield qualitatively different insights. We
find, in particular, that several of the SF-MI transitions in this
model are generically of first order; at sufficiently high tem-
peratures, they become continuous via tricritical points. Tri-
critical points also abound at zero temperature since some,
but not all, of the finite-temperature first-order transitions
become continuous as T→0. The resulting phase diagrams
�Figs. 4 and 10� are very rich and should provide a challenge

for experimental studies, which we hope our work will
stimulate. Experiments can study both the case U2�0, which
can be realized possibly by using 87Rb, and the case U2�0,
which can be realized by using 23Na. Thus, in principle, both
the phase diagrams of Figs. 4 and 10 could be obtained ex-
perimentally. Of course, this will require good experimental
control of both the temperature and the density �or chemical
potential� of the bosons.

Our mean-field theory has been shown5,6 to yield good
results for the spin-0 Bose-Hubbard model. In particular,
mean-field-theory plots of the scaled superfluid density �s /�
versus the scaled interaction U /Uc lie close to each other; at
worst, the disagreement is �22% in two-dimensional. Monte
Carlo results. The mean-field-theory prediction for UC

FIG. 5. Mean-field phase diagram in the ��-U0� plane for
U2 /U0=−0.03 and T=0. This has the same topology as the phase
diagram for the case U2=0 �Fig. 1�a� for T=0
, but the MI lobes
shrink marginally; the SF-MI transitions are continuous.

FIG. 6. Mean-field values of the superfluid order parameters
	1=	−1 and 	0, and �s plotted as functions of � for U0=12,
U2 /U0=−0.03, and T=0; �s goes to zero continuously at the SF-MI

transitions. The parameter �F� �2, defined only in the SF phase, as-
sumes the value 1, which confirms that we have a ferromagnetic SF
phase in this case.

FIG. 7. Mean-field values of the superfluid order parameters
	1=	−1 and 	0 plotted as functions of � for U0=10, U2 /U0

=0.03, and T=0. The SF phase has either 	−1=	1�0 and 	0=0 or
vice versa, which confirms that we have a polar SF in this case.

FIG. 8. Mean-field phase diagram in the ��-U0� plane for
U2 /U0=0.03 and T=0. The �=1 MI lobe has the same form as its
counterpart for U2=0 �Fig. 1�a�
. We see that the MI lobes expand
marginally, and the SF-MI transitions are continuous �represented
by a continuous line�, but for �=2, the SF-MI transition becomes of
first order �represented by a dashed line� and the MI phase is stable
over a much wider region of parameter space than for the case
U2=0.
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�5.83z, where the nearest-neighbor coordination number z
is 2d, for a d-dimensional hypercubic lattice. Recent Monte
Carlo simulations yield UC�29.34 �Ref. 16� for d=3, and
�16.74 �Ref. 17� if d=2; these are, respectively, 19.14% and
39.31% lower than the mean-field-theory predictions. �Note,
by contrast, that mean-field-theory predictions for the critical
temperature in the three- and two-dimensional Ising models
are too large by 32.98% and 76.27%, respectively.� Of
course, mean-field-theory cannot hope to capture the nature
of fluctuations in the superfluid and Mott-insulator phases.
To the best of our knowledge, there are no Monte Carlo
simulations for the spin-1 Bose-Hubbard model that yield its
phase diagram and parameters such as UC, so we cannot give
a quantitative comparison of our mean-field-theory predic-
tions for the spin-1 case with simulations. It is worth noting,
however, that the MI-SF transitions in the spin-1 case can be
of first order if U2�0; here, mean-field theory should be
especially good since there should be no diverging correla-
tion length at this transition.

As we mentioned in Sec. I, our mean-field theory can be
generalized to the case VT�0. Such a generalized mean-field
theory has to be inhmogeneous, i.e., the order parameters
and, therefore, the single-site, mean-field Hamiltonian de-
pend on the site label. For the formulation of such an inho-
mogeneous mean-field theory, for spin-0 bosons in a random
chemical potential, see Ref. 6. We have carried out a detailed
study of such an inhomogeneous mean-field theory for
spin-1 bosons, VT�0 and T=0; the variational energy now
has to be minimized with respect to a very large number of
site-dependent order parameters ��40 000 for a 1213 lattice
in three dimensions�. Such a calculation leads to alternating
shells of superfluid and Mott-insulator shells in the optical
lattice, as has been noted recently for the spin-0 case.18,19 A
full description of our inhomogeneous mean-field theory lies

FIG. 9. Plots of �s and � as function of � for T=0, U0=7, and
U2 /U0=0.03 �filled circles� and U2=0 �open circles�. In the former
case, �s changes continuously at the SF-MI transitions at the bound-
ary of the �=1 MI lobe �Fig. 8�, but jumps at the first-order SF-MI
transitions associated with the boundary of the �=2 MI lobe. For
U2=0, only the �=1 lobe is encountered in this plot and the SF-MI
transitions are continuous; �s shows a gentle minimum in the vicin-
ity of the �=2 MI lobe.

FIG. 10. �a� Mean-field phase diagram in the ��-T� plane for
U0=12 and U2 /U0=0.03 showing first-order �open circles� and
continuous �filled circles� transitions between SF and MI/NBL
phases and TCPs. This phase diagram is nearly the same as the
U2=0 phase diagram �Fig. 4�, but there are no zero-temperature,
tricritical points for the first-order boundaries associated with the
MI lobes for even values of �: e.g., TCP03 in Fig. 4 has no coun-
terpart here. �b� A quantitative comparison between these two phase
diagrams shows that the two phase diagrams are nearly indistin-
guishable except for the first-order boundaries that link the zero-
temperature, SF-MI transitions for even values of � with the tric-
ritical points directly above them �TCP3 here�; lines with open
circles �open diamonds� denote the first-order boundaries for
U2 /U0=0.03 �U2=0�. The region I between these lines lies in the
MI �SF� phase if U2 /U0=0.03 �U2=0�. The lines with filled tri-
angles show the MI-NBL crossover boundary.

FIG. 11. Representative plots of �s and � versus � for �a� T
=0 and �b� T=0.05 for U0=7 and U2 /U0=0.03 showing jumps at
first-order SF-MI transitions; �s changes continuously at the T=0,
continuous SF-MI transition associated with the �=1 MI lobe.
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well outside the scope of this paper and will be presented
elsewhere.

Our mean-field theory has been designed to investigate
the relative stabilities of SF and MI/NBL phases. It has pre-
dicted the even-odd asymmetry in the Mott-insulator lobes.
This feature of the phase diagram has also been predicted in
one dimension using density-matrix renormalization group
calculation.20 Our mean-field theory has enough structure to
unravel the differences between polar and ferromagnetic su-
perfluids. However, our mean-field theory does not account
for order parameters that can distinguish between different
spin orderings in the MI phase, e.g., spin-singlet and nematic
MIs, which have been investigated in the limit U0→� by

some groups.21,22 The generalization of our mean-field
theory to include such types of structures in the MI phases of
model �1� lies beyond the scope of this study, but is an in-
teresting challenge for further theoretical work.
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